Mock covers and Galois extensions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unramified Abelian Extensions of Galois Covers

We consider a ramified Galois cover φ : X̂ → Px of the Riemann sphere Px, with monodromy group G. The monodromy group over Px of the maximal unramified abelian exponent n cover of X̂ is an extension nG̃ of G by the group (Z/nZ), where g is the genus of X̂. Denote the set of linear equivalence classes of divisors of degree k on X̂ by Pic(X̂) = Pic. This is equipped with a natural G action. We show tha...

متن کامل

Extensions of Galois Connections

Galois connections play a very important role in the theory of continuous lattices and their various generalizations. (See, for example, [1], [2], [a], [4], [5], [7] and [9].) Morphisms of continuous lattices, as defined in [2], are precisely those upper adjoints of Galois connections which preserve directed sups. In [1] Bandelf and Ernd suggested that the right choice of morphisms for Z-contin...

متن کامل

U(g)-Galois Extensions

This paper studies the structure of U(g)-Galois extensions. In particular, we use a result of Bell to construct a “PBW-like” free basis for faithfully flat U(g)-Galois extensions. We then move to non-faithfully flat extensions and propose a possible equivalent condition for a U(g)-extension to be Galois. We get a partial result for this.

متن کامل

Locally coalgebra-Galois extensions

The paper introduces the notion of a locally coalgebra-Galois extension and, as its special case, a locally cleft extension, generalising concepts from [9]. The necessary and sufficient conditions for a locally coalgebra-Galois extension to be a (global) coalgebra-Galois extension are stated. As an important special case, it is proven, that under not very restrictive conditions the gluing of tw...

متن کامل

Unramified Covers of Galois Covers of Low Genus Curves

Let X → Y be a Galois covering of curves, where the genus of X is ≥ 2 and the genus of Y is ≤ 2. We prove that under certain hypotheses, X has an unramified cover that dominates a hyperelliptic curve; our results apply, for instance, to all tamely superelliptic curves. Combining this with a theorem of Bogomolov and Tschinkel shows that X has an unramified cover that dominates y = x − 1, if char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1984

ISSN: 0021-8693

DOI: 10.1016/0021-8693(84)90103-0